Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Bone marrow transplant: What is the impact of chemotherapy on the brain?

Published on: 21/02/2022 Reading time: 1 min
Cellule microgliale

More than 50,000 bone marrow-derived stem cell transplants are performed worldwide each year to treat a wide range of conditions, including brain diseases. Before the cells are transplanted, the patients are given chemotherapy to destroy the immune cells and thus prevent the transplanted cells from being rejected by the body. Until now, little was known about the effects of such treatment on the brain. In a new study, researchers from the Paris Brain Institute (Inserm/CNRS/Sorbonne University) and the Institut Pasteur, have looked into this problem. Using an animal model, they discovered how pre-transplant chemotherapy facilitated the replacement of the brain's innate immune cells, the microglia, by other immune cells derived from the transplanted stem cells (macrophages). These results are published in Nature Medicine.

Many brain diseases lead to progressive demyelination of the central nervous system with devastating neurological symptoms and risk of premature death (e.g. leukodystrophy). Gene therapy aimed at correcting disease-causing genetic mutations directly in bone marrow stem cells, and their subsequent autologous transplantation into patients, has developed in recent years and is now a treatment of choice for many of these conditions.

 

Clinical studies have shown that the use of chemotherapy prior to bone marrow stem cell transplantation, using a chemotherapeutic agent called busulfan, allows for efficient engraftment and tolerance of the genetically modified cells by the body. However, many questions remain, particularly concerning the mechanisms involved and the impact of this pre-transplant treatment on the patients' brains.

 

Therefore, the scientists studied the consequences of this treatment on various brain cell populations in an animal model. They looked at microglial cells, brain immune cells that are essential for maintaining healthy brain physiology in normal and pathological states. These cells have a strong capacity for self-renewal throughout life.

 

In their work, the scientists show that after busulfan chemotherapy, microglial cells completely lose this regenerative capacity, and that many of these cells die by senescence.

 

However, this process would not be harmful to the brain, since after transplantation, the disappeared cells are quickly replaced by bone marrow-derived cells (macrophages). The microglial cells eliminated by busulfan chemotherapy leave empty niches in the brain that are soon filled by bone marrow-derived macrophages. These macrophages then adopt the morphology and behaviour of normal microglia. Future studies will aim to determine whether these macrophages adopt all the properties of endogenous microglial cells in the brain.

This study sheds light for the first time on a mechanism explaining how stem cell-derived macrophages enter the brain after bone marrow cell transplantation. This better understanding is essential for developing new strategies for gene and cell therapy applied to diseases of the central nervous system.

Nathalie Cartier Directrice de recherche à l’Inserm et de l’équipe NeuroGenCell à l’Institut du cerveau, et dernier coauteur de l’étude

Cette étude met pour la première fois en lumière un mécanisme expliquant comment des macrophages dérivés de cellules souches, pénètrent le cerveau après une transplantation de cellules de moelle osseuse. Cette meilleure compréhension est essentielle pour développer de nouvelles stratégies de thérapie génique et cellulaire appliquée aux maladies du système nerveux central 

Pierre-Marie Lledo Directeur de recherche au CNRS et responsable de l’unité Perception et mémoire au sein du laboratoire « Gènes, synapses et cognition » (CNRS/Institut Pasteur) et dernier coauteur de l’étude

Sources

Hematopoietic stem cell transplantation chemotherapy causes microglia senescence and peripheral macrophage engraftment in the brain. Nature Medicine, février 2022

https://www.nature.com/articles/s41591-022-01691-9

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show...
05.16.2024 Research, science & health
See all our news