Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Channels strike again: a common battle for axatias and epilepsy?

Published on: 22/10/2015 Reading time: 1 min
ataxie cervelet
Retour à la recherche

Giovanni Stevanin, researcher at the Brain and Spine Institute (Institut du Cerveau - ICM), and his collaborators identified a recurring mutation in a new gene responsible for cerebellar axatia that en-codes a calcium channel expressed in certain neurons of the cerebellum.

Numerous treatments that regulate the activity of calcium channels are widely used, and this discovery could lead to therapeutic advances for these rare diseases. This study was published in The American Journal of Human Genetics.

Cerebellar ataxias are degenerative disorders that affect the cerebellum, an important structure of the central nervous system that regulates balance and coordination. Patients suffering from this disorder present debilitating symptoms, handicapped walking, and im-paired movements. Certain forms of cerebellar ataxia have a genetic origin. However, even though more than 50 related genes have been discovered, the underlying cause for the dis-order is still unknown for more than 40% of patients.

Thanks to a combination of new high-throughput sequencing techniques and large-scale genome mapping, Giovanni Stevanin and Marie Coutelier at the Brain and Spine Institute (Institut du Cerveau - ICM), Philippe Lory at the Institute for Functional Genomics (IGF) in Montpellier, and their collaborators identified a recurring mutation in a new gene that affected three independ-ent families. This gene, CACNA1G, is responsible for autosomal dominant forms of cerebel-lar ataxia. The gene encodes for a channel, Cav3.1, that allows calcium ions to enter Purkinje cells in the cerebellum. The mutation affects a critical part of the protein that is responsible for detecting changes in the membrane potential of the cell that determines when the channel will open and close. The mutation described makes the channel less sen-sitive and reduces its overall activity.

These results bring attention back to the importance of ion channels in the cellular pro-cesses that lead to cerebellar ataxia. Interestingly, mutations that increase activity of the channel have already been described as being risk factors for epilepsy, a relationship that will be important to explore further in order to better understand these two families of pathologies. The frequent similarities between symptoms of epilepsy and ataxias linked to ion channel mutations illustrates the simultaneous involvement of ion channels in several complex neuronal processes.

Sources

https://www.cell.com/ajhg/fulltext/S0002-9297(15)00371-7?_returnURL=htt…

Marie Coutelier et al., American Journal Human Genetics. 2015.

Our news on the subject

Sclérose en plaques : identification d’une nouvelle molécule favorisant la remyélinisation
Multiple Sclerosis: Identification of a Molecule that Promotes Repair of the Nervous System
A molecule previously studied in the context of sleep disorders and attention deficit hyperactivity disorder (ADHD) is now, for the first time, revealing its potential in experimental models of multiple sclerosis (MS): it protects neurons and...
01.27.2026 Research, science & health
VignetteActu WBHF 2026
World Brain Health Forum 2026
More than one in three people will experience a brain disorder at some point in their lives. This reality, identified by the World Health Organization as a major public health priority, calls for unprecedented international mobilization. It is...
01.12.2026 Events
Une nouvelle approche pour évaluer les patients en état de conscience altérée
A New Approach to Assessing Patients with Disorders of Consciousness
In intensive care units, some patients who appear unconscious occupy a gray zone in their relationship to the world. To better diagnose them and predict their recovery potential, Dragana Manasova, Jacobo Sitt, and their colleagues have developed an...
01.08.2026 Research, science & health
Ne plus penser à rien : vers une signature cérébrale du blanc mental
Not Thinking About Anything: Toward a Brain Signature of Mind Blanking
What if the flow of our thoughts occasionally just stopped? Esteban Munoz-Musat, Lionel Naccache, Thomas Andrillon, and their colleagues at Paris Brain Institute and Monash University in Melbourne show that the sensation of “thinking about nothing”...
12.26.2025 Research, science & health
Deux nouvelles certifications pour les plateformes de l’Institut du Cerveau
Two new certifications for Paris Brain Institute’s core facilities
Paris Brain Institute’s core facilities were recently awarded two new certifications: ISO 9001 certification for ICM.Quant and ISO 20387 certification for its DNA & Cell Bank.
11.14.2025 Institutional
La dépression résistante possède une signature moléculaire spécifique
Treatment-resistant depression identified as a distinct molecular subtype
An international study published in Brain, Behavior, and Immunity shows that patients with treatment-resistant depression (TRD) have a unique biology, different from those who respond to standard therapies. More than 5,000 genes were found to behave...
11.03.2025 Research, science & health
See all our news