Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Discovery of the mechanisms behind epileptic seizures in autoimmune encephalitis

Published on: 07/04/2022 Reading time: 1 min
mécanismes

An unprecedentedly precise exploration of the molecular and electrophysiological basis of a form of autoimmune encephalitis, conducted by the "Cellular Excitability and Neuronal Network Dynamics" team at the Paris Brain Institute, elucidates for the first time a scenario for the onset of epileptic seizures in this pathology. The results, published in Progress in Neurobiology, pave the way for the identification of new therapeutic targets for drug-resistant epilepsy.

Epileptic seizure and autoimmune encephalitis

Autoimmune encephalitis occurs as a result of an attack on the central nervous system by an individual's own immune cells. It is an important cause to look for in adult and childhood epilepsy, once the classic seizure triggers have been excluded: an autoimmune cause is thought to be involved in up to 30% of cases. The identification of an autoimmune cause also has major implications for medical treatment. In this case, anti-inflammatory drugs may be effective in treating the symptoms, while conventional anti-epileptic drugs are ineffective. Prompt treatment of autoimmune seizures is crucial because the neuronal hyperactivity associated with seizures can lead to significant cognitive and neurological consequences.

In autoimmune encephalitis, several proteins can be targeted by immune cells, such as NMDA receptors, leading to very severe neuropsychiatric disorders, or the synaptic protein LGI1, the most common target in patients with autoimmune epilepsy, which modulates the activity of the potassium channel KV1.1 at the synapse.

A new study model, combined with unprecedented cellular exploration

How can antibodies targeting the LGI1 protein induce such severe epileptic seizures? To explore this question, Paul Baudin, first author of the study, led by Vincent Navarro (Sorbonne University, AP-HP), associated with Séverine Mahon (Inserm) and Stéphane Charpier (Sorbonne University) in the team "Cellular Excitability and Dynamics of Neuronal Networks", blocked the KV1.1 channel in the motor cortex of rats. This resulted in seizures identical to those observed in patients. By analysing brain activity using electroencephalography (EEG), the researchers were able to identify a specific wave in the motor cortex preceding the onset of the seizure. These initial data reinforce the major homology between the patients and the animal model of encephalitis targeting the LGI1 protein, by blocking the KV1.1 channel.

Using this model, the researchers conducted an in-depth exploration at the cellular level of the consequences of blocking the KV1.1 channel. Combining multi-electrode recordings at the level of the motor cortex, set up with Delphine Roussel from the electrophysiology platform of the Paris Brain Institute, EPhys, and intracellular recordings, the expertise of Stéphane Charpier and Séverine Mahon in the team, they identified major changes in the activity of the synapses and the excitability of the neurons.

A scenario for the onset of seizures

Thanks to this unique approach, the researchers were able to propose a scenario for the onset of seizures and their very frequent repetition. After a first seizure, the neurons are inhibited and then gradually depolarise, i.e. the levels of activation and synchronisation of the neurons are increasingly high, until a new seizure is initiated. The study of the intrinsic characteristics of the neurons shows that they have become hyperexcitable, i.e. much more sensitive to the slightest stimulation. These data also explain the increase in the frequency of seizures in patients over time.

The Paris Brain Institute team suggests a central role for potassium channels in epilepsy associated with antibody-related autoimmune encephalitis. This result, for Prof. Vincent Navarro, opens up major perspectives for therapeutic research, notably on the anti-epileptic potential of potassium channel modulators.

Sources

https://pubmed.ncbi.nlm.nih.gov/35283238/
Baudin P, Whitmarsh S, Cousyn L, Roussel D, Lecas S, Lehongre K, Charpier S, Mahon S, Navarro V. Prog Neurobiol. 2022 Mar 10

Our news on the subject

Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
See all our news