Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

A new mechanism to control neural stem cell function during brain development

Published on: 23/03/2018 Reading time: 1 min
Bassem Hassan

Bassem Hassan’s team at Institut du Cerveau - ICM discovered a specific type of neural stem cell and deciphered a highly precise temporal control mechanism for their function during brain development in Drosophila (fruit flies). The results were published in the leading journal Developmental Cell and pave the way for advanced molecular and genetic studies focused on understanding the biology of these cells.

The development of our brain relies on a set of extremely complex mechanisms, many of which remain unexplored. One of these mechanisms enables production of the correct number of neurons, and relies on perfect spatiotemporal coordination of neural stem cells during development. This precise control of cell division and cellular differentiation into the various types of cells that make up an organ is still relatively unknown.

Over the course of development, neuronal and glial cell production originates from a series of cell divisions that start with neural stem cells:

  • Asymmetric divisions create a new stem cell and a daughter cell that will become a specific type of neuron. This enables stem cell self-regeneration and a stable stem cell reserve.
  • Symmetric divisions create either two cells that will differentiate, or two new stem cells. Therefore, depending on the developmental stage of the brain, these divisions enable either stem cell self-amplification to create a larger reserve, or the production of differentiated cells, such as the neurons that will form the basis of the brain.

A phase of symmetrical self-amplifying division in neural stem cells has been identified in human brain development. The mechanisms underlying and regulating this phase, however, have yet to be fully understood.

Drosophila models are a cornerstone of research into the molecular, cellular, and genetic mechanisms underlying brain development. According to current models, Drosophila neural stem cells were only undergo asymmetric divisions during brain development.

Bassem Hassan’s* team successfully identified the first example of self-amplifying neural stem cells in fruit flies that use symmetric division as well as their role in neuron increase.

«These cells can self-amplify, meaning that they can increase stem cell reserves during brain development. They may be partly responsible for the massive cortical increase observed in species with a larger brain. » explained Bassem Hassan.

« We welcome this important discovery. The work of Bassem Hassan’s team will shed valuable light on the regulation of stem cell during brain development, with significant impact on the way we think about the brain and development” Professor Alexis Brice, General Director of the Institut du Cerveau - ICM.

The research team then studied the mechanisms surrounding cell function.

Neurogenesis is regulated by a small and highly preserved set of “proneural proteins” during evolution: their role in asymmetrical division and initiation of cell differentiation is well-known.

The researchers, led by postdoctoral fellow Natalia Mora, the first author of the study, found that these stem cells are generated by temporal conversion of certain neural stem cells from an asymmetric division mode to a symmetric division mode. This conversion goes hand in hand with a change in how certain proneural proteins are expressed, and is a necessary and sufficient condition to modify division type and to generate the right number of neurons during development.

« Beyond identifying a new type of neural stem cell, our results suggest that differential, quantitative, and tightly controlled regulation of proneural proteins and their targets may act as a molecular clock that controls a series of events during development. » adds Bassem Hassan.

“This pioneering work from Bassem and his team to uncover this powerful biological switch is an important scientific discovery,” said Tom Skalak, executive director of The Paul G. Allen Frontiers Group. “It tells us that this critical timing of stem cell switches is critical in this complex system’s function, much as switches are key to complex human-designed systems like cell phones and computers. Perhaps it’s not so surprising that evolution makes use of switches for growing a big brain also.”

*Bassem Hassan, leader of the « Brain Development » team at Institut du Cerveau - ICM, is a Research Director at Inserm, Einstein Visiting Fellow at Free University of Berlin and at the Berlin Institute of Health, and an Allen Distinguished Investigator.

Sources

A Temporal transcriptional switch governs stem cell division, neuronal numbers and maintenance of differentiation. Natalia Mora, Carlos Oliva, Mark Fiers, Radoslaw Ejsmont, Alessia Soldano, Ting-Ting Zhang, Jiekun Yan, Annelies Claeys, Natalie De Geest, Bassem A. Hassan. Developmental Cell. March 22, 2018.
https://www.sciencedirect.com/science/article/pii/S1534580718301552

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show...
05.16.2024 Research, science & health
See all our news