Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Transcranial Magnetic Stimulation, what happens in the brain?

Published on: 06/10/2022 Reading time: 1 min
image

Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation procedure that uses transient electromagnetic fields to act in a focused manner on a particular brain region. It can be used as a therapy for depression, Parkinson's disease or obsessive-compulsive disorders in patients resistant to drug treatments. Researchers from the Paris Brain Institute also showed lasting effects of TMS in rehabilitation after a stroke.

Therapeutic effects of TMS in humans

It is generally considered that high intensity magnetic stimulation used in humans generate an electric field sufficient to modulate the activity of neurons: triggering nerve impulses encoding cerebral information and inducing plasticity phenomena in the neuronal networks of the targeted region.

However, although its therapeutic efficiency has been recognized in a number of cases, the mechanisms that allow TMS to restore or durably modify neuronal activities in the stimulated brain regions remain poorly understood.

TMS at the neuronal level

For the first time, Manon Boyer and Séverine Mahon, respectively doctoral student and researcher in the team "DYNAMICS OF EPILEPTIC NETWORKS AND NEURONAL EXCITABILITY" in collaboration with Dr Antoni Valero-cabre Team "FRONTLAB: FRONTAL FUNCTIONS AND PATHOLOGY" (institutducerveau-icm.org) at the Brain Institute, have directly demonstrated the effect of low-intensity TMS on the excitability and spontaneous activity of neurons in the cerebral cortex, activity that allows these cells to communicate with each other and to transmit information to peripheral organs and muscles. This work is published in The Journal of Physiology.

The researchers combined the application of repeated low-intensity magnetic stimulation to the somatosensory cortex of an experimental model with intracellular recording of the electrical activity of the underlying neurons; a technique allowing to understand the effect of TMS seen from inside the neurons.

schéma tms
Recording of intraneuronal electrical activity before and after TMS

They showed that repetitive low intensity TMS can also trigger action potentials in neurons and induce plasticity expressed by a lasting decrease in the spontaneous activity of neurons, in their excitability and in the amplitude of synaptic events (reflecting a decrease in the transmission of information between neurons). These changes are not reproduced by directly stimulating the cells with an electric current of the same intensity, directly demonstrating the specific role of the magnetic field.

New therapeutic avenues for TMS

In conclusion, this work shows that low-intensity TMS has lasting effects on the excitability and discharge activity of neurons in the cortex and opens up new therapeutic avenues for pathologies in which cerebral hyperexcitability is observed, such as epilepsy or Tourette's syndrome. Indeed, in epilepsy, we observe an abnormally high electrical activity of a set of neurons in the cerebral cortex which then form an epileptic focus.

This work shows that low-intensity TMS, a non-invasive therapy that can be easily deployed at the patient's bedside, is a very promising approach for patients with epilepsy.

Sources

In vivo low‐intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity - Boyer - 2022 - The Journal of Physiology - Wiley Online Library
https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP283244

Our news on the subject

Le cortex moteur
Origin of Lance-Adams Syndrome Finally Elucidated
First described 60 years ago, chronic myoclonus following cerebral anoxia is now known as Lance-Adams syndrome. This is a severe disorder whose mechanisms were, until now, poorly understood. Geoffroy Vellieux, Vincent Navarro, and their colleagues at...
06.16.2025 Research, science & health
Tiré de New Theory of Colours de Mary Gartside, 1808
Aphantasia Might Be Linked to Alterations in Brain Connectivity
Thanks to 7T fMRI, researchers from Paris Brain Institute and NeuroSpin, the CEA's neuroimaging centre, are exploring the neural substrate of visual imagery at very high resolution for the first time. Their results, publiés [i] in Cortex, pave the...
06.06.2025 Research, science & health
Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
See all our news