Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

World Parkinson's Day 2022: where does research stand?

Published on: 11/04/2022 Reading time: 1 min
Un chercheur

On the occasion of World Parkinson's Day, which will be held on 11 April 2022, the Paris Brain Institute takes stock of the latest advances in research and the challenges that remain in the fight against the second most common neurodegenerative disease after Alzheimer's disease.

While treatments have made great progress in reducing patients' motor symptoms, scientists are still working to better understand the mechanisms behind neurodegeneration, to improve the diagnosis and prognosis of patients in order to set up more relevant clinical trials, and to optimise existing therapies so that they benefit patients as long as possible. The teams at the Paris Brain Institute are carrying out numerous complementary studies on Parkinson's disease, from the most fundamental to the most applied research. Here is a closer look at three particularly promising projects.

PROJECT #1: Unravelling the molecular and cellular mechanisms of neurodegeneration to develop new therapeutic approaches: focus on microglial cells.

Parkinson's disease is characterised by the degeneration of a population of neurons located in a deep region of the brain, called the substantia nigra. In recent years, several major players in the death of these neurons have been identified. The aggregation of the protein a-synuclein inside neuronal cells is the first of these. The exploration of familial forms of the disease has also highlighted the role of mitochondria - the cell's powerhouses - and brain inflammation in the process of neuronal degeneration.

A growing body of literature links the function of genes involved in familial forms of Parkinson's disease to the regulation of mechanisms related to immunity and inflammation. This is particularly the case for the LRRK2 and PRKN(Parkin) genes. In the central nervous system, immunosurveillance is provided by microglial cells. Although these cells are active in the brains of people with Parkinson's disease, their precise contribution to the neurodegenerative process remains to be clarified. The team of Olga Corti (Inserm) and Jean-Christophe Corvol (Sorbonne University, AP-HP) at the Paris Brain Institute is developing an innovative project based on the use of human cerebral organoids (mini-brains) and complex co-cultures of human cells to explore the role of the microglial component in the context of mutations in the LRRK2 and PRKN genes. A better understanding of the role of microglia and immune pathways in Parkinson's disease could open up new therapeutic avenues to prevent neuronal death and thus slow disease progression. The models developed in the context of this project could also constitute relevant tools for screening therapeutic molecules, as they incorporate cells from patients with Parkinson's disease.

(Project led by Olga Corti and Philippe Ravassard at the Paris Brain Institute, in collaboration with Michela Deleidi at the DZNE, Tübingen).

PROJECT #2: Refining the diagnosis and prognosis of patients using brain imaging and artificial intelligence

 There is not one but many Parkinson's diseases. Each patient has different symptoms and a different course of the disease. Today, diagnosis and monitoring of the disease is based on clinical observation. The identification of biomarkers, in particular through brain imaging, is crucial for a more reliable diagnosis of the disease. Thanks to artificial intelligence, the challenge is to be able to develop predictive algorithms of the future evolution of each patient, in order to adapt their treatment and also to integrate them into clinical trials appropriate to the characteristics of their disease.

The MOV'IT team, led by Marie Vidailhet (Sorbonne University, AP-HP) and Stéphane Lehéricy (Sorbonne University, AP-HP), has used a magnetic resonance imaging biomarker, neuromelanin, which has recently led to major advances in the monitoring of Parkinson's disease. In particular, the Paris Brain Institute team developed an artificial intelligence algorithm that automatically detects changes in the volume and signal of the region mainly affected in the disease, the substantia nigra, by monitoring neuromelanin. They found differences between patients at a prodromal stage of the disease and those in whom clinical signs have already appeared. This automatic, rapid, and assessor-independent algorithm is therefore a valuable tool for studying changes in neuromelanin in the substantia nigra, allowing direct and non-invasive assessment of neurodegenerative changes in this structure. These measurements could provide relevant biomarkers for assessing the efficacy of treatments modifying the course of Parkinson's disease.

PROJECT #3: Improving existing therapies with new technologies

 Until the advanced stage of Parkinson's disease, drug treatment based on L-DOPA, a dopamine precursor, makes it possible to compensate for the lack of dopamine production by the damaged neurons, and greatly reduces motor symptoms. Over time, the effectiveness of this treatment diminishes, and abnormal movements appear. Deep brain stimulation can then take over. This neurosurgical method, which requires millimetre-level precision, involves implanting electrodes in the centre of the patient's subthalamic nucleus, a deep brain structure. It modulates the electrical activity of this region and thus makes it possible to correct the dysfunctions induced by the dopamine deficit. The 'Experimental Neurosurgery' team, led by Brian Lau (CNRS) and Carine Karachi (Sorbonne University, AP-HP) at the Paris Brain Institute is seeking to gain an ever more detailed understanding of normal and pathological brain anatomy and physiology. Recently, the team was able to offer several patients the implantation of a new stimulation device, capable of recording intracerebral activity in an embedded manner. This advance opens up important perspectives, such as recording this activity at different moments of daily life, to better understand the dysfunctions of the deep brain networks in the disease and the effects of deep brain stimulation.

Another project, developed at the Paris Brain Institute by Nathalie George (CNRS) in this team, concerns neurofeedback methods. These approaches consist of teaching patients to regulate certain brain activities associated with the disease themselves, for example by varying a curve displayed on a screen representing their brain activity. Before these devices can be used in a clinical trial in patients, many issues remain to be clarified, including the mechanisms of learning neurofeedback, the regulation of brain activity and the role of pathological brain activity in the disease. It should be noted that neurofeedback will require very sophisticated signal analysis methods and recordings under very controlled conditions if it is to be used in a clinical context.

Learn more about Parkinson disease

Parkinson's disease in brief

The tremor, the best-known symptom of Parkinson's disease, is not the most common. The motor impairment characteristic of the disease takes various forms in patients, such as akinesia, a slowness, delay or even difficulty in initiating movement, or hypertonia, a stiffness or even permanent contraction of certain muscles. The first symptoms are the consequence of a silent phase of the disease developing over several years, during which the nerve cells of a specific region of the brain, the substantia nigra pars compacta, are gradually destroyed. These cells are so-called dopaminergic neurons: they use a neurotransmitter called dopamine to perform their function. The substantia nigra and dopamine play a key role in the control of movement, which explains the visible symptoms of Parkinson's disease, but also in many other, less easily observable cognitive and behavioural functions, such as difficulties in concentrating, chronic loss of motivation or a depressive syndrome. The most important risk factor for developing Parkinson's disease is age, with a prevalence of 0.04% in people between 40 and 49 years of age, which increases to 2% in people over 80 years of age. 5% of cases of Parkinson's disease are familial, i.e. inherited through the mutation of a dominant or recessive gene. Parkinson's disease, like many neurological diseases, is said to be multifactorial. Many environmental factors and genetic predisposition conferring a higher risk of developing the disease have been identified in recent years.

Our news on the subject

À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
See all our news