Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Acetylcholinesterase, a potential therapeutic target for ALS

Published on: 24/03/2017 Reading time: 1 min
acetylcholine

The neuromuscular junction is a zone that enables transfer of information from the nervous system to muscles, and is affected in Amyotrophic Lateral Sclerosis. The team led by Edor Kabashi at the Institut du Cerveau – ICM focused on the role of acetylcholinesterase, an enzyme that targets the neurotransmitter acetylcholine, in changes that take place in the junction over the course of the illness.

Amyotrophic Lateral Sclerosis, or ALS, is a severe neurodegenerative illness characterized by progressive muscular paraplegia due to motoneuron degeneration in the primary motor cortex, brain stem and spinal cord. These specific neurons conduct information from the brain to muscles and enable movement. In the case of destruction, information is no longer transmitted to muscles, which progressively weaken and become atrophied. Currently, no treatment is available in large part because mechanisms leading to progressive motoneuron destruction are unknown.

One major hypothesis in ALS involves pathological changes in the neuromuscular junction in early stages of the disease, before motoneuron degeneration and before symptom onset. The neuromuscular junction is comprised of a motoneuron that transfers information to a muscle thanks to acetylcholine, a neurotransmitter. The contact zone between the neuron and muscle is called a synapse, said to be “cholinergic” because it uses acetylcholine as a neurotransmitter. A defect in the neuromuscular junction leads to paralysis or muscle weakness.

Once acetylcholine has fulfilled its mission and transferred the necessary information, it is degraded by the enzyme acetylcholinesterase. This enzyme is also thought to play a role in neural development.

Malfunction of the cholinergic system, involving the synapses that use acetylcholine as a neurotransmitter, has been highlighted in many neurodegenerative illnesses including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, and Huntington’s disease. Acetylcholinesterase has been the focus of a lot of attention as a potential therapeutic target. Molecules that prevent acetylcholinesterase action, that increase availability and quantity of acetylcholine within the synapse, partially alleviate cognitive and functional symptoms in these diseases.

Involvement in ALS remains rather unknown. Loss of cholinergic synapses has been observed in certain sporadic ALS cases. Additionally, muscular biopsies in patients with ALS revealed a decrease in acetylcholinesterase levels in muscles and an increase in enzyme levels in the bloodstream. These changes may reflect neuromuscular junction malfunction.

More thorough exploration of cholinergic deficit in genetic models for ALS may shed new light on the disease mechanisms and be used as an early diagnostic biomarker.

Sources

https://institutducerveau-icm.org/en/parkinson-2/
Campanari ML, García-Ayllón MS, Ciura S, Sáez-Valero J, Kabashi E. Front Mol Neurosci. 2016 Dec 27

Our news on the subject

À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
Une personne écrit sur un tableau
Looking back at the “Brain to Market” Summer School 2024 dedicated to motor neurone disease
From September 9 to 13, the Open Brain School, the education center at Paris Brain Institute, organized the 10th edition of its flagship training program in neuroscience and entrepreneurship—dedicated to fostering innovation. This event brought the...
10.07.2024 Teaching & training
Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
See all our news