Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Artificial Intelligence-based MRI biomarker of Isolated REM Sleep Behavior Disorder and Parkinson's disease

Published on: 18/02/2022 Reading time: 1 min
image

Rahul Gaurav, a research Engineer in the MOV’IT team led by Pr. Stéphane Lehéricy and Pr. Marie Vidailhet, at the Paris Brain Institute, developed an artificial intelligence framework to investigate fully automatic neurodegeneration in the substantia nigra (SN) using neuromelanin-sensitive MRI in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), a prodromal form of Parkinsonism. The findings, published in Movement Disorders, indicated that this model was fast, user-independent and showed comparable performance with the manual method for detecting neuromelanin-based SN volume and signal changes in the patients with iRBD and Parkinson’s disease (PD). Considering the accuracy and speed of this approach, as it takes less than a fraction of a second to segment SN in a single subject, this method could be a crucial step towards the implementation of a non-rater dependent fully automatic method for studying neuromelanin changes in clinical settings and large-scale neuroimaging studies by eliminating the human factor as much as possible.

iRBD is characterized by abnormal behaviors and loss of normal muscle atonia during REM sleep. Most iRBD subjects develop Parkinson’s disease (PD) or dementia with Lewy bodies, diseases in which there is a loss of the dopaminergic neurons of the SN. At PD onset, 30 to 60% of dopaminergic neurons are already lost in the SN. As most iRBD subjects are in a prodromal parkinsonism stage, many present a mild SN impairment. Neurodegenerative changes in the SN in parkinsonism can be detected using neuromelanin-sensitive MRI technique. Neuromelanin is a pigment contained in dopaminergic neurons. Characterizing the neuromelanin signal variations by investigating the SN using manual segmentation is a time-consuming task leading to substantial inter-individual variability across raters. Hence, there is a critical need of a robust automatic framework to facilitate quantification of the neuromelanin changes in the SN.

 

To answer this question, Dr Gaurav developed an artificial intelligence framework that can fully automatically investigate the SN neuromelanin changes in iRBD and PD patients as compared to the controls. Subjects were prospectively recruited as part of the ICEBERG study (ClinicalTrials.gov: NCT02305147) at Paris Brain Institute. The RBD status was confirmed using video polysomnography at the Sleep department of the Pitié-Salpêtrière hospital led by Pr. Isabelle Arnulf. MRI data were acquired using 3 Tesla (PRISMA, Siemens, Germany) at the CENIR-MRI core facility of the Paris Brain Institute.

 

All SN measurements differed significantly between the subjects with iRBD and PD, and healthy controls. The iRBD patients demonstrated neurodegenerative SN changes at a lower level than in PD patients. Hence, this fast rater-independent automatic framework can help study the SN neuromelanin changes allowing direct non-invasive assessment of neurodegenerative changes. Furthermore, these measurements could represent target biomarkers for disease-modifying treatments.

 

Pr. Lehéricy’s team is further studying whether neuromelanin imaging technique could serve as a predictor of conversion in these patients or to estimate the time before the appearance of clinical motor signs and the evolution of neuromelanin changes in relation to the striatal dopaminergic function.

 

Sources

Gaurav, R., Pyatigorskaya N., Biondetti, E., Valabrègue, R., Yahia-Cherif, L., Mangone G., Leu-Semenescu S., Corvol J.C., Vidailhet, M., Arnulf I., and Lehéricy, S., 2022. Deep Learning-Based Neuromelanin MRI changes of Isolated REM Sleep Behavior Disorder. Movement Disorders. Mar 10. doi: 10.1002/mds.28933.
https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mds.28933

Pour contacter l’auteur correspondant :

Page d’accueil : www.rahulgaurav.com

Twitter : @SayRahulGaurav

Courriel : rahul.gaurav@icm-institute.org

Our news on the subject

Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
See all our news