Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Discovery of a new gene involved in an early and very severe form of Parkinson's disease

Published on: 04/03/2016 Reading time: 1 min
pipettage

Pr. Alexis Brice's team at the Brain and Spine Institute – Inserm / CNRS / UPMC, in collaboration with two international consortia has identified a new gene, VPS13C, involved in an early form of Parkinson's disease. Mutations in VPS13C lead to a loss of function of the corresponding protein. This protein may play a key role in neuron protection through the maintenance of mitochondrial function. These results provide a better understanding of the mechanisms leading to neuron degeneration, thus opening the way to new therapeutic approaches. Moreover, they will enable the establishment of a diagnostic tool for these very severe forms of the disease, in order to manage them as quickly as possible.

The genetic cause of nearly half of early forms of Parkinson's disease has not yet been elucidated. Through high-throughput DNA sequencing from 62 people with a form of early and consanguineous Parkinson's disease, Suzanne Lesage and her staff have identified a new gene involved, VPS13C. Mutations in this gene are associated with a very characteristic form of the disease which develops early (before 40), evolving quite rapidly (aggravation of motor symptoms leading to severe disability) and is accompanied by cognitive impairment. Mutations of this gene are harmful and lead to a loss of function of the corresponding protein.

In Parkinson's disease, degeneration of a specific population of neurons, dopaminergic neurons, would be due, in part, to a dysfunction of mitochondria, equivalent to the powerhouse of the cell. Indeed, in some forms of Parkinson's disease, dopamine neurons' death is caused by mutations in PINK1 and PARK2 genes, coding for proteins which function is to preserve mitochondria quality. The good functioning and survival of neurons works, among other things, via degradation (or mitophagy) and replacement of defective mitochondria. Both proteins, PINK1 and PARKIN are involved in this process.

Data collected in cellular models by Olga Corti and her staff in Alexis Brice's team, suggest that the loss of function of VPS13C protein increases the vulnerability of mitochondria to stress, which leads to the activation of PINK1/PARKIN pathway in order to preserve their activity. VPS13C role in mitochondria protection and its relationship with PINK1/PARKIN dependent mitophagy remain to be explained.

This work highlights a new gene associated to a very severe form of the disease which loss of function would lead to mitochondrial dysfunction. They enable a better understanding of signalling pathways impacting mitochondrial function, and pave the way for the discovery of new therapeutic leads. Moreover, the possibility of a reliable molecular diagnosis for this severe form of the disease will allow faster care.

Sources

https://www.cell.com/ajhg/fulltext/S0002-9297(16)00048-3

Our news on the subject

Le cortex moteur
Origin of Lance-Adams Syndrome Finally Elucidated
First described 60 years ago, chronic myoclonus following cerebral anoxia is now known as Lance-Adams syndrome. This is a severe disorder whose mechanisms were, until now, poorly understood. Geoffroy Vellieux, Vincent Navarro, and their colleagues at...
06.16.2025 Research, science & health
Tiré de New Theory of Colours de Mary Gartside, 1808
Aphantasia Might Be Linked to Alterations in Brain Connectivity
Thanks to 7T fMRI, researchers from Paris Brain Institute and NeuroSpin, the CEA's neuroimaging centre, are exploring the neural substrate of visual imagery at very high resolution for the first time. Their results, publiés [i] in Cortex, pave the...
06.06.2025 Research, science & health
Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
See all our news