Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Discovery of a new gene involved in an early and very severe form of Parkinson's disease

Published on: 04/03/2016 Reading time: 1 min
pipettage

Pr. Alexis Brice's team at the Brain and Spine Institute – Inserm / CNRS / UPMC, in collaboration with two international consortia has identified a new gene, VPS13C, involved in an early form of Parkinson's disease. Mutations in VPS13C lead to a loss of function of the corresponding protein. This protein may play a key role in neuron protection through the maintenance of mitochondrial function. These results provide a better understanding of the mechanisms leading to neuron degeneration, thus opening the way to new therapeutic approaches. Moreover, they will enable the establishment of a diagnostic tool for these very severe forms of the disease, in order to manage them as quickly as possible.

The genetic cause of nearly half of early forms of Parkinson's disease has not yet been elucidated. Through high-throughput DNA sequencing from 62 people with a form of early and consanguineous Parkinson's disease, Suzanne Lesage and her staff have identified a new gene involved, VPS13C. Mutations in this gene are associated with a very characteristic form of the disease which develops early (before 40), evolving quite rapidly (aggravation of motor symptoms leading to severe disability) and is accompanied by cognitive impairment. Mutations of this gene are harmful and lead to a loss of function of the corresponding protein.

In Parkinson's disease, degeneration of a specific population of neurons, dopaminergic neurons, would be due, in part, to a dysfunction of mitochondria, equivalent to the powerhouse of the cell. Indeed, in some forms of Parkinson's disease, dopamine neurons' death is caused by mutations in PINK1 and PARK2 genes, coding for proteins which function is to preserve mitochondria quality. The good functioning and survival of neurons works, among other things, via degradation (or mitophagy) and replacement of defective mitochondria. Both proteins, PINK1 and PARKIN are involved in this process.

Data collected in cellular models by Olga Corti and her staff in Alexis Brice's team, suggest that the loss of function of VPS13C protein increases the vulnerability of mitochondria to stress, which leads to the activation of PINK1/PARKIN pathway in order to preserve their activity. VPS13C role in mitochondria protection and its relationship with PINK1/PARKIN dependent mitophagy remain to be explained.

This work highlights a new gene associated to a very severe form of the disease which loss of function would lead to mitochondrial dysfunction. They enable a better understanding of signalling pathways impacting mitochondrial function, and pave the way for the discovery of new therapeutic leads. Moreover, the possibility of a reliable molecular diagnosis for this severe form of the disease will allow faster care.

Sources

https://www.cell.com/ajhg/fulltext/S0002-9297(16)00048-3

Our news on the subject

À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
See all our news