Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

A gene involved in certain types of intellectual disability regulates myelin sheath development

Published on: 03/02/2017 Reading time: 1 min
image

Myelin, a protective sheath that covers various nerve fibers, is essential in the transmission of nerve signals and enables proper function of the nervous system. Myelin degeneration causes severe illnesses including multiple sclerosis. Lamia Bouslama-Oueghlani from the team led by Brahim Nait Oumesmar at Paris Brain Institute and collaborators proved that the Pak3 gene, involved in certain types of intellectual disabilities, regulates myelin sheath formation.

Myelin plays a critical role in nerve signal transfer as well as in axonal protection and support. It is necessary to ensure proper function of the nervous system, and myelin deficit is observed in severe pathologies including multiple sclerosis and leukodystrophy. Oligodendrocytes are the key cells in the development process.

Myelin and oligodendrocyte deficit is also described in several mental/psychiatric illnesses; recent studies highlighted the critical role played by myelin plasticity in cognitive and behavioral functions. Oligodendrocytes could therefore be targeted in neuropsychiatric pathologies including depression, autism and schizophrenia.

In this context, Pak3 is of particular interest. Several Pak3 genetic mutations were identified in mental illnesses with intellectual disability. PAK3 protein is expressed in the brain, where its action has mainly been studied in neurons but not in glial cells. However, Pak3 is expressed in oligodendrocytes and precursors, cells that are to become oligodendrocytes after differentiation and maturation.

For the first time, a research project involving the team led by Brahim Nait Oumesmar has focused on effects of a loss of function in gene Pak3 on oligodendrocyte and myelination development.

Researchers highlighted strong PAK3 protein expression in oligodendrocyte precursors, notably lowered in mature oligodendrocytes. The team found that loss of Pak3 function leads to poor differentiation of oligodendrocyte precursors and poor myelin sheath development is certain areas of the brain. However, it appears that in adults poor differentiation may be compensated by mature oligodendrocytes in terms of oligodendrocyte density as well as axon myelination.

Researchers also focused on the effects of lack of Pak3 at cellular level by comparing proliferation, migration and differentiation of oligodendrocyte precursor cultures with or without Pak3 expression. Results show that
PAK3 acts as a regulator of oligodendrocyte precursor differentiation.

The next step is studying how PAK3 acts on oligodendrocyte precursors, and understanding its involvement in mental and psychiatric illnesses.

Sources

https://pubmed.ncbi.nlm.nih.gov/27940202/
Maglorius Renkilaraj MR, Baudouin L, M Wells C, Doulazmi M, Wehrlé R, Cannaya V, Bachelin C, Barnier JV, Jia Z, Nait Oumesmar B, Dusart I, Bouslama-Oueghlani L.

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them ...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain ...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol ...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and ...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of ...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show ...
05.16.2024 Research, science & health
See all our news