Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Hereditary spastic paraplegia: discovery of a new mechanism

Published on: 24/11/2015 Reading time: 1 min
Visualisation de l'ADN

A team at the Institut du Cerveau - ICM showed that different mutations of one gene, ALDH18A1, are associated with several types of hereditary spastic paraplegias and different modes of transmission. Moreover, the researchers identified a new blood marker associated with the disease that could be used for diagnosis. These results contribute to a better understanding of the disease and establishing a more precise diagnosis.

Hereditary spastic paraplegias consist of a heterogeneous group of diseases from both a clinical and genetic perspectives. These neurodegenerative disorders affect individuals of all ages. Clinical signs begin progressively and are characterized by severe walking problems that result from a stiffness (spasticity) of the lower limbs. This clinical picture can be complicated by clinical signs that are shared with other neurological disorders such as amyotrophic lateral sclerosis, neuropathies, and cerebellar ataxias.

The group led by Giovanni Stevanin, INSERM/EPHE researcher, within the team of Alexis Brice at the Institut du Cerveau - ICM, has been working for the last several years on studying the genetic and pathophysiological mechanisms implicated in these disorders, and has already identified several genes responsible for these pathologies.

Different modes of transmission exist (autosomal dominant, autosomal recessive, or X-linked), and the clinical signs vary in function of the gene that is affected.

For the first time, researchers at the Institut du Cerveau - ICM recently showed that different mutations of one gene, ALDH18A1, are associated with several modes of transmission and different clinical signs.

This gene was previously known for being implicated in another neurocutaneous syndrome, however seven new mutations were identified in seven different families suffering foremost from spastic paraplegia without skin conditions. For the first time, the researchers showed that the mode of transmission of these mutations might not only be autosomal recessive but also autosomal dominant and may cause different symptoms that are not correlated with the mode of transmission.

The gene ALDH18A1 codes for an enzyme, P5CS, localized within mitochondria, energy centers of cells. Patients with a dominant mutation along the ALDH18A1 gene present all types of abnormal metabolic profiles (at the level of amino acid metabolism).

This work allowed identification of a new blood biomarker associated with the disease (in the case of autosomal dominant transmission) that will allow diagnosis of the disease.

These results contribute to a better understanding of the genetic origin of HSP and of the mechanisms implicated in their development. The results will allow refining the diagnosis of the disease not only at the genetic level but also thanks to the analysis of blood markers in patients.

Sources

Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, Tao F, Konop J, Stoll M, Charles P, Jacoupy M, Matusiak R, Alonso I, Tallaksen C, Mairey M, Kennerson M, Gaussen M, Schule R, Janin M, Morice-Picard F, Durand CM, Depienne C, Calvas P, Coutinho P, Saudubray JM, Rouleau G, Brice A, Nicholson G, Darios F, Loureiro JL, Zuchner S, Ottolenghi C, Mochel F, Stevanin G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015, 138:2191-2205
http://www.ncbi.nlm.nih.gov/pubmed/26026163

Coutelier M, Mochel F, Saudubray JM, Ottolenghi C, Stevanin G. Reply: ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain 2015, pii: awv248.
http://www.ncbi.nlm.nih.gov/pubmed/26297557

Our news on the subject

Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
See all our news