Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Insects can taste and therefore detect poisonous foods

Published on: 16/07/2016 Reading time: 1 min
image

Defending oneself against infections is crucial for health and survival. But detecting bacteria before they enter the body is even more advantageous! Our senses of smell and taste are particularly important for survival: they allow us to know if some foods are potentially tainted, poisoned, or expired, thanks to sensory neurons. Are these protection mechanisms also present in animals? This is the question Bassem Hassan, team leader at the Institut du Cerveau – ICM, and his team tried to answer. By studying drosophila, or vinegar flies, the researchers have highlighted that these insects have a TRPA1 receiver, which allows them to detect aversive substances and thus avoid contaminated food. This mechanism is highly conserved between species and is probably essential for survival. The research, performed at the VIB Center for the Biology of Disease and KU Leuven in collaboration with Karel Talavera’s team at KU Leuven, has just been published in eLife.

Our immune system is able to detect and fight infections, but this requires a lot of energy. Humans therefore have mechanisms to avoid them, such as the inflammatory reaction which occurs when a bacterium gets under the skin, or the unpleasant feeling of tainted food. Many organisms, in particular insects, land on and eat rotten food. The Talavera and Hassan teams wanted to know if these animals owned, as humans do, a system to detect the bacteria which develops in this food.

In order to answer this question, the researchers studied a type of vinegar fly named drosophila. Drosophila feeds itself and lays its eggs on rotten food, especially over-ripe fruits which represent a high-energy supply and a source of protein, cholesterol and yeast. However, over-ripe or rotten fruits imply the presence of bacteria, such as Escherichia Coli (E. coli), which releases a toxin that can be as harmful in drosophila as it is in humans.

To study whether drosophila flies have a sensorial mechanism enabling them to detect such bacteria, the researchers offered them two types of food: healthy food and food tainted by the E. coli bacterium. They then observed the flies’ food choices and laying habits. The flies avoided the tainted food that they tasted and quickly rejected, with the females also refusing to lay their eggs on it, which showed that drosophilas have a specific mechanism to detect and avoid potentially dangerous food.

The team then identified the neurons involved in this mechanism as two sensory neurons located in the drosophila’s mandibles, which are able to detect aversive substances. They have also shown that the expression of a sensory receptor, TRPA1, in these cells is essential to this detection. As a matter of fact, when this receptor is removed, the flies eat the food containing the bacterium and the females lay their eggs on it. Without TRPA1, the flies do not differentiate between healthy food and tainted food, showing that this receptor is essential to protect them against infections. This highly conserved mechanism between species is no doubt essential for survival.

Drosophila is not dangerous, but other insects can become a terrible threat to agriculture and represent disease vectors for humans. The aversive substance avoidance mechanism in drosophila is also highly preserved in other insects. The genetic modification of the receptor involved in the detection of harmful substances could make insect pests even more sensitive to bacteria and thus facilitate their elimination in a natural way. 

Sources

https://elifesciences.org/articles/13133

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show...
05.16.2024 Research, science & health
See all our news