Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

[Interview] Nicolas Renier, new team leader at the ICM

Published on: 26/01/2017 Reading time: 1 min
Nicolas RENIER

Nicolas Renier, a new team leader at the Institut du Cerveau - ICM, joined the Institute on the 1st January 2017. His work focuses on changes of connections between neurons in adulthood, using a new technique: 3D brain imaging through light-sheet microscopy. This fundamental work could ultimately lead to applications for various neurodegenerative diseases, such as Alzheimer's disease, or stroke.

What will your work consist in at the Institut du Cerveau - ICM?

The work of my team will focus on large scale rearrangements of neural networks structure in adult brain. We want to know in particular how learning and adaptability phenomena in the adult brain are reflected by changes in the morphology and connectivity of neurons over time.

More specifically, we will address this issue through two different aspects. First, from a molecular and cellular perspective, what are the factors that ensure survival and maintenance of the many branches of a mature adult neuron under normal conditions? From a dynamic point of view, what factors will then foster rearrangements of neuron connectivity by the creation of new branches, or possibly even the controlled destruction of certain branches?

We will also study these phenomena on a much wider scale, trying to determine whether certain changes in the mammal behaviour could sometimes be explained by a massive reorganization of the connections between specific groups of neurons in adults.

What models will your work be based on?

We work with the mouse. We will base our work on simple behavioural tasks, which the mouse adopts naturally, but which undergo changes during its lifetime. We will study how their brain changes and adapts to enable the animal to perform new tasks over time. Thanks to the imaging and genetic techniques, we hope to be able to describe very precisely the changes in the organization of certain neural circuits.

A very striking example is the evolution of parental behaviours in mice. Before having young, the male mice are indifferent or even aggressive towards the young. But after a first mating, a transition of behaviour takes place, and the mouse tolerates the presence of the young. The time taken for this change in behaviour corresponds exactly to gestation time. This means that when the babies arrive the male mouse is ready to live with them, or even participate in parenting tasks. We do not know yet precisely what changes in the organisation of connections between neurons could explain this behavioural adaptation. We will therefore explore which modifications of axonal projections in the brain support this type of behaviour transitions, and at molecular level which proteins control the creation and destruction of neuronal branches.

This is similar to the study of axon guidance or neuron migration during embryonic development. However, in the adult brain we work on a relatively frozen environment in comparison with the exuberance of cellular movements in the embryo. Our hope is that the potential to make and break connections between neurons on a large scale still exists in the adult brain. This phenomenon is studied at different scales and is called cerebral plasticity.

Immunomarquage 3D de la Tyrosine Hydroxylase d’un cerveau adulte entier en vues dorsale et latérale, préparé avec la technique iDISCO+ et imagé par microscopie en feuillets à lumière. Le marquage révèle les neurones adrénergiques et dopaminergiques. Crédit: Nicolas Renier
3D immunolabelling of Tyrosine Hydroxylase of an entire adult brain in dorsal and lateral views, prepared with the iDISCO+ technique and imaged by light-sheet microscopy. Marking reveals adrenergic and dopaminergic neurons. Credit: Nicolas Renier

Will your work make knowledge advance about certain neurological diseases?

Our topic is very basic but can lead to medical applications in the long term: our work could make it possible, for example, to better understand the mechanisms of degeneration of neurons in neurodegenerative diseases. Certain processes controlling in a normal situation the stability of each branch of a neuron can for example race and lead to a degradation of neurons or their branches in pathological situation.

Also, if we understand how new long-distance connections develop between mature adult neurons, we could try and support the restoration of projections in regions of the brain that have become silent after a lesion or a stroke.

After a stroke, neuronal death and loss of general activity were observed in the affected area. Our studies could identify new molecular targets in order to promote the re-wiring of these silent regions through adjacent regions.

The neuronal deaths phenomena are of course one of the major characteristics of neurodegenerative diseases. The degradation of brain tissue through problems affecting glia, vascularisation, potentially the accumulation of plaques, etc. can lead to neurons’ death. Several teams today think that neuronal loss could be an active process of destruction of neurons and their axons, beyond simply "passive" death due to the degradation of their environment. In a patient, even in early Alzheimer's for example, it would be possible for active degradation of connections between neurons to be in progress, a phenomenon that could be in continuity with the "physiological" mechanisms of axon restoration that we will try to elucidate.

Our work is thus upstream and alongside the research focused on these diseases’ causes and treatments, and we hope to be able to interact closely with the other Institut du Cerveau - ICM teams working directly on these topics.

Do you have a particular studying method?

Our main tool is the 3D brain imaging through light-sheet microscopy. This imaging method is booming. It is based on obtaining transparent samples and I have had the opportunity to participate in the development of protocols and analytical methods in the United States at the University of Rockefeller. The protocol that I have set up with my colleagues makes it possible to specifically mark certain neurons in an intact brain, and then to image it by making it optically transparent by a chemical process, while keeping it intact. Thanks to molecular biology and genetics tools, we can reveal neuronal circuits with high accuracy and reproducibility, and then observe them in three dimensions thanks to light-sheet microscopy.

Immunomarquage 3D de la Tyrosine Hydroxylase d’un cerveau adulte entier en vues dorsale et latérale, préparé avec la technique iDISCO+ et imagé par microscopie en feuillets à lumière. Le marquage révèle les neurones adrénergiques et dopaminergiques. Crédit: Nicolas Renier
3D immunolabelling of Tyrosine Hydroxylase of an entire adult brain in dorsal and lateral views, prepared with the iDISCO+ technique and imaged through light-sheet microscopy. Marking reveals adrenergic and dopaminergic neurons. Credit: Nicolas Renier

More precisely, the microscopy technique consists in scanning the brain with a plane laser beam, a bit like making cuts in the sample. As this sheet of light can move very quickly from top to bottom, we save a lot of time compared to classical microscopes that work point by point in 3D space. Our whole project relies on this new technological capacity to image brains at very high speed.

This will enable data statistical processing, which is difficult in traditional study with cuts. There are indeed already many mapping techniques based on physical cuts obtained from the sample. In our case, in one hour we can scan an entire brain, keeping the sample intact so it can be imaged again. This allows continuous imaging of the samples. The Institute is currently purchasing all the equipment needed to perform this new type of imaging.

Your work seems to have several common points with that of the team of Bassem Hassan, is this correct?

Yes indeed. Along with the team of Bassem Hassan, we are part of the same thematic axis, which is quite new in the Institute. We have similar interests concerning the nervous system development and neurons origin, but also the links between morphogenesis development and neuron projections, and the influence that these may have on the behaviour. The team of Bassem Hassan is interested in the interindividual variability of behaviour in Drosophila, and the neural substrate of these behaviours. This joins some concepts that we would like very much to start exploring in mice.

What was your background before arriving at the Institut du Cerveau - ICM?

I studied most of the time in Paris, and especially my PhD, at the Institute of Vision, with Alain Chédotal, who works on the development of the nervous system and axonal guidance. I already had a strong interest in this topic at the time, when I was trying to understand how the guiding errors during development were then corrected by the plasticity of networks in adulthood. For my post-doctorate I joined the laboratory of Marc Tessier-Lavigne in New York in the University of Rockefeller, which is well known for its work on axonal guidance molecules.

While I wanted to visualize neurons’ axons during development, I started to develop improvements for existing three-dimensional imaging techniques. My mission mostly consisted in making technical developments for 3D imaging techniques by light-sheet microscopy to be used in neuroscience for the study of neuronal circuits in intact brains.

Today, at the Institut du Cerveau - ICM, I wish to carry on my research, trying to exploit this technique as much as possible to make new discoveries on neurons connectivity development in adults.

Our news on the subject

À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
See all our news