Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Measure multiple sclerosis progression with a cutting-edge technique

Published on: 25/11/2016 Reading time: 1 min
image

Multiple sclerosis is an inflammatory disease of the nervous central system leading to a progressive destruction of the myelin sheath surrounding the axons, essential for their protection and for the transmission of the nerve impulse. Bruno Stankoff and Catherine Lubetzki’s team developed a cutting-edge imaging technique which makes possible to visualize neuron demyelination and remyelination and to quantify their degeneration. These results, published in Annals of Neurology, open the way to better treatment for patients and to the evaluation of novel remyelination therapies.

Axones, neurons’ extension, are surrounded by a myelin sheath which plays a key role in the transmission of the nerve impulse and the protection of axons. In Multiple sclerosis, the immune system attacks the own elements of the patients and leads to the progressive destruction of the myelin sheath, also called demyelination, in the brain and the spine.

Multiple sclerosis is an autoimmune inflammatory disease. It is the most frequent demyelinating disease of the nervous central system and the first cause of non-traumatic severe disability in young adults. It leads to movement, sensitivity, balance, vision impairments…Multiple sclerosis affects about 100 000 individuals in France and more than 2, 8 million in the world. The disease affects women more than men, with a 3 for 1 ratio.

The quantification of demyelination and remyelination in MS patients is essential to better understand how does the disease progress and to evaluate possible remyelination therapies. Using positron emission tomography imaging or PET-SCAN (imaging technique), associated with specific molecules called tracers, could allow the observation of myelin dynamics in multiple sclerosis.

Scientists from Bruno Stankoff and Catherine Lubetzki’s team focused on two radiotracers: the [11C] PiB which can bind the myelin of the white matter, and the [11C] flumazenil, a molecule binding the neuron-specific GABA-A receptors.

They showed a progressive decrease in binding [11C] PiB between the undamaged white matter and white matter lesions caused by multiple sclerosis, reflecting a myelin decrease. Using [11C] PiB would allow to quantify the myelin dynamics in multiple sclerosis, i.e the demyelination and remyelination, and to categorize patients according to their ability to renew destroyed myelin sheathing, and direct the most appropriate course of treatment.

Researchers from Bruno Stankoff and Catherine Lubetzki’s team also looked at the degeneration of neurons in MS patients at different stages of the disease, using PET-SCAN with [11C] flumazenil.

Flumazenil is a molecule which can bind a receptor located on the synapse of neurons, the connection between two neurons and dendrites. They showed that flumazenil binding on its receptor decreases significantly in MS patients, with relapsing-remitting form in which relapses alternate with remitting phase with an improvement of the symptoms, as well as progressive forms in which there are no remitting phases.

These results open the way to a novel use of PET-SCAN with [11C] flumazenil to locate and quantify neurodegeneration in patients with multiple sclerosis. This quantification technique could also be used to evaluate neuro-protective drugs during clinical trials.

Sources

https://pubmed.ncbi.nlm.nih.gov/26292991/ Annals of Neurology, 21 août 2015
https://pubmed.ncbi.nlm.nih.gov/27098444/ Annals of Neurology, 21 avril 2016.

Our news on the subject

Le cortex moteur
Origin of Lance-Adams Syndrome Finally Elucidated
First described 60 years ago, chronic myoclonus following cerebral anoxia is now known as Lance-Adams syndrome. This is a severe disorder whose mechanisms were, until now, poorly understood. Geoffroy Vellieux, Vincent Navarro, and their colleagues at...
06.16.2025 Research, science & health
Tiré de New Theory of Colours de Mary Gartside, 1808
Aphantasia Might Be Linked to Alterations in Brain Connectivity
Thanks to 7T fMRI, researchers from Paris Brain Institute and NeuroSpin, the CEA's neuroimaging centre, are exploring the neural substrate of visual imagery at very high resolution for the first time. Their results, publiés [i] in Cortex, pave the...
06.06.2025 Research, science & health
Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
See all our news