Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Mechanisms and therapeutic implications of hypermutation in gliomas

Last update: 24/09/2024 Reading time: 1 min
Gliome malin en culture cellulaire (spheroides).

A high tumour mutational burden (hypermutation) is observed in some gliomas1,2,3,4,5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood.

Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide.

Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade.

Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations.

These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.

Sources

Mechanisms and therapeutic implications of hypermutation in gliomas, Nature 2020.
https://www.nature.com/articles/s41586-020-2209-9

Our news on the subject

Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
See all our news