Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Neurons involved in cognitive flexibility communicate at a distance

Published on: 28/06/2023 Reading time: 1 min
Projection d’un neurone. Crédit : NICHD/N. Gupt

To adapt to the small and large events that give the world its ever-changing character, we use an essential ability: cognitive flexibility. It enables us to improvise in the event of disruptions on our morning commute, to cope with the unexpected behavior of a loved one, or to get used to living in a new country. Kathleen Cho (Inserm) at Paris Brain Institute, and her colleagues from Vikaas Sohal's laboratory in the Department of Psychiatry and Behavioral Sciences at the University of California, have described, in mice, a class of neurons specialized in this ability to adapt. The researchers show that disturbances in their functioning could play a role in the onset of psychiatric illnesses characterized by a certain cognitive rigidity, such as schizophrenia. These results are published in Nature.

To adapt to perceived changes in our environment, the brain constantly updates the activity of neural circuits in the prefrontal cortex, a region involved in attention, anticipation, and decision-making. But until now, researchers did not know what mechanisms were responsible for these modifications – which are essential to rodents, primates, and humans if they are to survive.

By studying this fascinating ability, we have found a specific type of neuronal connection in the prefrontal cortex, which helps to update our representation of the world – and more importantly, its rules. Thanks to it, we don't persist in using an inappropriate strategy to achieve a goal. Such as typing in an out-of-date code, again and again, to unlock a door.

By studying this fascinating ability, we have found a specific type of neuronal connection in the prefrontal cortex, which helps to update our representation of the world – and more importantly, its rules, explains Kathleen Cho, a researcher in the 'Cellu researcher in the 'Cellular physiology of cortical microcircuits' team at Paris Brain Institute

This newly discovered connection is formed by inhibitory neurons, a class of nerve cells capable of dampening the activity of other neurons. Researchers thought these inhibitory neurons transmitted electrical and chemical information to areas situated in their immediate vicinity. But while exploring how they work in mice, Kathleen Cho and her colleagues at the University of California have made an important discovery. “We observed that a subclass of inhibitory neurons, parvalbumin-expressing interneurons, could communicate with neurons situated very far from them, in the opposite hemisphere of the prefrontal cortex,” says the researcher.

The Secrets of a long-distance relationship

To better understand the exact function of these interneurons, the team observed their activity in mice during an ingenious test. The researchers presented the animals with bowls in which food was hidden. At first, the presence of garlic or sand in the container indicated the precise location of the reward. Then, this clue was replaced by another, forcing the mice to identify and exploit the new rule to unearth the food.

However, when the famous long-distance inhibitory neuronal connections were deactivated in a group of rodents via an optogenetic technique, they proved incapable of adapting to change. They continued to search for food wherever they detected sand or the smell of garlic. In a way, the mice were stuck in their old habits...

The researchers also showed that the long-distance inhibitory connections synchronized variations in high-frequency neuronal electrical activity – gamma oscillations – between the two hemispheres of the prefrontal cortex. “This synchronization was associated with a particular event: the moment when the mice realized that the rule was no longer valid,” Cho says.

The effects of this synchronization, surprisingly, persist over time. Mice in which parvalbumin-expressing interneurons had been deactivated remained unable to integrate new rules for several days. Subsequently, the artificial stimulation of gamma synchronization compensated for this deficit and fully restored their adaptive capacities.

A slight lack of flexibility

Previous research has shown poor synchronization of gamma waves in the prefrontal cortex, and abnormalities in inhibitory neurons exist in many schizophrenic patients. This psychiatric illness results in great difficulty in adapting to change – a symptom also observed in bipolar disorder or autism spectrum disorder.

Further studies will be needed to determine what role dysfunctional inhibitory neuronal connections might play in these diseases. “We don't know precisely which cells in the prefrontal cortex receive information via these long-distance connections, adds the researcher. We also don't know what molecular mechanisms are involved in long-term changes in neuronal activity”. Answering these questions could help us understand under what conditions the brain gives up retaining certain information... and opens to novelty.

Reference

Cho, K.K.A. et al., Long-range inhibition synchronizes and updates prefrontal task activity, Nature, 2023. DOI: 10.1038/s41586-023-06012-9.

Sources

This study was carried out thanks to Inserm, the Marie Skłodowska-Curie Horizon 2020 program, the University of San Francisco, the NIH, the McKnight Endowment Fund for Neuroscience, and the Brain Research Foundation.

Our news on the subject

Le développement du cerveau a une part d’aléatoire
The stochastic aspect of brain development
Although every person’s personality is the result of genetic and environmental factors, these are not the only factors at play. Bassem Hassan and his team at Paris Brain Institute have discovered that, in fruit flies (drosophila), individuality also...
05.12.2025 Research, science & health
Analyse MERSCOPE
New treatment pathways for brain malformation-linked focal epilepsy?
A study by Stéphanie Baulac’s team has revealed somatic mutations in different cell types in patients with type 2 focal cortical dysplasia. This disease causes drug-resistant epileptic seizures, for which the main treatment option is currently...
05.12.2025 Research, science & health
Un iceberg
The ICEBERG cohort, 10 years of collective scientific and medical mobilization
The ICEBERG cohort, initiated 10 years ago, is interested in studying factors predictive of the onset and progression of Parkinson’s disease.
05.15.2025 Research, science & health
La huntingtine est une protéine indispensable au développement embryonnaire, à la formation et au maintien du tissu cérébral.
Huntington's Disease: The Energy Hypothesis Gets Traction
Huntington's disease, a rare hereditary neurological disorder, is associated with an energy deficit that precedes the onset of symptoms and is closely linked to their progression. At Paris Brain Institute, Fanny Mochel and her colleagues are testing...
02.11.2025 Research, science & health
À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Stéphanie Debette
Professor Stéphanie Debette takes the helm of Paris Brain Institute
Appointed Executive Director of Paris Brain Institute for a five-year term, Professor Stéphanie Debette took up her new position on January 1, 2025. She succeeds Professor Alexis Brice, who has served as Executive Director since 2012.
01.07.2025 Institutional
See all our news