Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

A new anti-inflammatory mechanism identified

Published on: 25/10/2022 Reading time: 1 min
image
Retour à la recherche

The team "Plasticity and regeneration of myelin" co-directed by Brahim NAIT-OUMESMAR, Inserm Research Director at the Paris Brain Institute - in collaboration with Angela Giangrande's team (IGBMC, Illkirch) has just demonstrated that the Gcm2 gene has a conserved function from flies to humans in the control of inflammation of the central nervous system. This work is published in Cell Reports.

The gcm gene

The gcm (glial cells missing) gene was initially identified in the fly Drosophila melanogaster as a key regulator of the determination of undifferentiated neural cells into glial cells of the nervous system. Thus, Drosophila in which this gene is inactivated show a complete absence of glial cells and an excess of neurons. In Drosophila, gcm is also required for the differentiation of hemocytes, cells related to macrophages in mammals.

image figure 1 gcm2com
RNAscope detection of Gcm2 expression (red) in microglia/macrophages (Cx3cr1, green) in a spinal cord demyelinating lesion.

An anti-inflammatory effect

In this study, the researchers showed that Gcm2 is expressed by microglial cells (the resident immune cells of the central nervous system), during brain aging in a mouse model, suggesting that the increased inflammation in the aged brain is partly due to these immune cells.

The study of mice in which the Gcm2 gene is inactivated showed a modification of the morphology of microglial cells associated with a pro-inflammatory profile, during aging or in response to myelin lesions, confirming the major role of this gene in the regulation of neuroinflammation.

Very interestingly, the study showed Gcm2 protein expression in active lesions multiple sclerosis in humans, lesions in which significant inflammation is observed.

New therapeutic avenues

From a biological point of view, those results demonstrate that the expression of Gcm2 by microglial/macrophage cells favors their transition to an anti-inflammatory state which benefits to lesion repair.

Gcm is a transcription factor, i.e. a protein necessary for the initiation or regulation of gene transcription. Its expression leads to a cascade of biological reactions, known as a signaling pathway, which in turn involves several other proteins. Given the strong potential of transcription factors in coordinating the expression of several genes and the small number of known transcription factors with a similar function, the results of this work represent a major contribution to the understanding of the molecular mechanisms controlling the inflammatory response.

It also pave the way to new therapeutic targets studies for diseases where the inflammatory response must be contained, such as multiple sclerosis or other neurodegenerative diseases.

Sources

Pavlidaki A., Panic R et al. Cell Reports 41, 3, 111506, October 18, 2022
https://linkinghub.elsevier.com/retrieve/pii/S2211124722013560

Our news on the subject

Sclérose en plaques : identification d’une nouvelle molécule favorisant la remyélinisation
Multiple Sclerosis: Identification of a Molecule that Promotes Repair of the Nervous System
A molecule previously studied in the context of sleep disorders and attention deficit hyperactivity disorder (ADHD) is now, for the first time, revealing its potential in experimental models of multiple sclerosis (MS): it protects neurons and...
01.27.2026 Research, science & health
VignetteActu WBHF 2026
World Brain Health Forum 2026
More than one in three people will experience a brain disorder at some point in their lives. This reality, identified by the World Health Organization as a major public health priority, calls for unprecedented international mobilization. It is...
01.12.2026 Events
Une nouvelle approche pour évaluer les patients en état de conscience altérée
A New Approach to Assessing Patients with Disorders of Consciousness
In intensive care units, some patients who appear unconscious occupy a gray zone in their relationship to the world. To better diagnose them and predict their recovery potential, Dragana Manasova, Jacobo Sitt, and their colleagues have developed an...
01.08.2026 Research, science & health
Ne plus penser à rien : vers une signature cérébrale du blanc mental
Not Thinking About Anything: Toward a Brain Signature of Mind Blanking
What if the flow of our thoughts occasionally just stopped? Esteban Munoz-Musat, Lionel Naccache, Thomas Andrillon, and their colleagues at Paris Brain Institute and Monash University in Melbourne show that the sensation of “thinking about nothing”...
12.26.2025 Research, science & health
Deux nouvelles certifications pour les plateformes de l’Institut du Cerveau
Two new certifications for Paris Brain Institute’s core facilities
Paris Brain Institute’s core facilities were recently awarded two new certifications: ISO 9001 certification for ICM.Quant and ISO 20387 certification for its DNA & Cell Bank.
11.14.2025 Institutional
La dépression résistante possède une signature moléculaire spécifique
Treatment-resistant depression identified as a distinct molecular subtype
An international study published in Brain, Behavior, and Immunity shows that patients with treatment-resistant depression (TRD) have a unique biology, different from those who respond to standard therapies. More than 5,000 genes were found to behave...
11.03.2025 Research, science & health
See all our news