Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

A new mathematical model of brain connectivity after stroke

Published on: 22/04/2022 Reading time: 1 min
cerveau

In a recent paper published in the Journal of Royal Society Interface, Catalina Obando, Charlotte Rosso (Sorbonne Université, AP-HP) Fabrizio de Vico Fallani (Inria) and their collaborators at the Brain Institute propose a new approach to mathematically model brain reconnection after a stroke.

After a stroke, the phenomenon of plasticity allows the brain to modify some connections to recover all or part of its capacities. Today, in many cases, it is difficult to predict how a patient will recover. A better understanding of connectivity mechanisms, how brain regions interact with one another, over time after a stroke is therefore essential to develop new therapeutic strategies.

Fabrizio de Vico Fallani's group in the "ARAMIS - algorithms, models and methods for human brain images and signals" team collaborated with Maurizio Corbetta from the University of Padua (Italy), who gathered a unique database of stroke patients who underwent functional MRI at three time points - 2 weeks after the accident, 3 months after and at 1 year -. The researchers' challenge was to find out whether it was possible, through mathematical modelling, to extract predictive information about the patient's future condition.

For each subject, they modelled the functional networks of the brain to characterise their evolution over time and to correlate them with the clinical score of motor, visual, language, attention, and memory functions.

We addressed two main questions: what are the connectivity mechanisms over time after a stroke? Are we able to extract information from the first two MRIs to predict the patient’s behaviour at one year?

Fabrizio de Vico Fallani (Inria)

The group of researchers developed an approach based on two post-stroke mechanisms: the increase in connection intensity in the damaged brain hemisphere, and the increase in connections between the two hemispheres, and more particularly between the damaged system and its equivalent in the other half of the brain. In particular, the team equated these mechanisms in the form of temporal patterns, which represent basic patterns of connectivity building up or breaking down over time. To this, they combined a statistical model applicable at the individual level.

The model was then applied to 30 patients and control subjects. The results obtained show that these temporal connectivity mechanisms characterise the evolution of the brain network of stroke patients, whereas they are less present in healthy subjects. One question remains: does this dynamic connectivity revealed by the model have predictive potential for stroke recovery?

The temporal connection signatures are indeed associated with the evolution of the patients' condition. There is a very strong correlation, especially for language. The formation of motifs reinforcing the interactions between brain areas close to the lesion and the formation of connections with the intact hemisphere are thus able to predict the recovery of language in patients

Fabrizio de Vico Fallani

The model developed by the researchers provides a new methodology, applicable on an individual scale, for identifying the temporal signatures of brain reorganisation after an injury. The results also demonstrate the fundamental dimension of temporality in this type of modelling and the predictive power of this model in the field of language.

Sources

https://pubmed.ncbi.nlm.nih.gov/35232279/

Obando C, Rosso C, Siegel J, Corbetta M, De Vico Fallani F.J R Soc Interface. 2022 mars.

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show...
05.16.2024 Research, science & health
See all our news