Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Parkinson's disease: a neuronal protective mechanism

Published on: 23/12/2015 Reading time: 1 min
Maladie de Parkinson : un mécanisme qui protège les neurones

The Institut du Cerveau - ICM scientists have recently discovered a mechanism which protects neurons from cell death. The loss of this protective mechanism may contribute to the degeneration of neurons in patients with Parkinson's disease.

In Parkinson's disease, scientists have reason to believe that the degeneration of a neuronal specific population, the dopaminergic neurons, is due, in part, to a mitochondrial dysfunction, the equivalent of the cell's energy powerhouse.  Indeed, in some forms of Parkinson's disease, the dopaminergic neurons' death is caused by toxins targeting the mitochondria or by the mutation of genes, such as Parkin, which function is to maintain their quality. The proper functioning and survival of neurons gets, therefore, among other things, through the degeneration and replacement of the defective mitochondria.

The team led by Olga Corti in Alexis Brice's group has just described a natural mechanism of mitochondria protection in an experimental model of Parkinson's disease. This mechanism implies maintaining the expression of a mitochondrial protective enzyme, named HSD17B10, under the effect of Parkin, which role in the degradation of damaged mitochondria is also well described. The loss of this new protective mechanism may, therefore, contribute to the mitochondria's dysfunction and the degeneration of dopaminergic neurons in Parkinson's disease caused by the Parkin gene's mutation.

Sources

Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10.

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show...
05.16.2024 Research, science & health
See all our news