Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Spinocerebellar ataxias: a widely underestimated diversity

Published on: 21/06/2023 Reading time: 1 min
cervelet

Spinocerebellar ataxias are a very heterogeneous group of inherited diseases associated with degeneration of the cerebellum – a region at the back of the skull that plays an essential role in motor control. Patients have gait and balance disorders that gradually worsen with time... but this is the only thing they have in common: spinocerebellar ataxias differ in their genetic origin, clinical manifestations, and evolution. To better understand this diversity and offer a personalized approach for each patient or family, the team led by Alexandra Durr (Sorbonne University, AP-HP) at Paris Brain Institute initiated a vast international collaboration, which made it possible to carry out the genetic study of 756 individuals. The findings are published in The American Journal of Human Genetics.

The major challenge with spinocerebellar ataxias (or SCA) is interpreting the extreme genetic variability observed in those who are affected. How can we establish the link between genetic characteristics, pathophysiological mechanisms, and specific symptoms when patients are so different from one another? What effect does this lack of knowledge have on patient care?

To interpret genetic data, it is essential that geneticists talk to clinicians. ACS affects 1 to 5 individuals per 100,000 people worldwide. Among these cases, there are even rarer forms of the disease, that are quite difficult to care for: we know very little about them. Our team, therefore, wanted to systematically describe all the variants already identified so that in the future, no patient is left on the sidelines.

Alexandra DURR Head of the ‘Basic to translational neurogenetics’ team at Paris Brain Institute

Identifying rare forms

The most common spinocerebellar ataxias are called triplet diseases. Accounting for almost 60% of cases, they are caused by a genetic mutation based on the expansion of a trinucleotide repeat. This error causes the synthesis of polyglutamine proteins –toxic to specific populations of neurons in the cerebellum, spinal cord, or even the cerebral cortex and peripheral nervous system.

The remaining 40% of ataxias are due to other genetic abnormalities and are based on different pathophysiological mechanisms. Patients risk being lumped together with the best-known ataxias... or never receiving the correct diagnosis

There is an urgent need to reduce our lack of knowledge about other ACS. To this end, we combined clinical and genetic information from people who carried a pathogenic variant of the genes associated with spinocerebellar ataxias. To obtain robust results, all available data had to be aggregated! We called for fellow 'ataxiologists' around the world, and fortunately, they answered

Alexandra DURR Head of the ‘Basic to translational neurogenetics’ team at Paris Brain Institute

This international collaboration allowed the researchers to gather 756 patients and compare the age of onset, course, and symptoms of the disease. Their results show that many stereotypes attached to spinocerebellar ataxias turn out to be inaccurate in these rare forms. It also emerged that the diversity of disease manifestations had been greatly underestimated so far.

Indeed, while the progression of the disease was relatively slow in all patients, it sometimes began in childhood.

For the same genetic mutation, ataxia occurs at birth in some and is associated with intellectual disability... while in others, it develops over 60 years old, Durr adds. These two cases have been observed in the same family

Alexandra DURR Head of the ‘Basic to translational neurogenetics’ team at Paris Brain Institute

A limited predictive potential

Another surprise was that many of the patients were very young, with clinical features similar to those usually found in neurodevelopmental diseases. This contrasts with the best-known triplets ACS which generally manifests in adulthood, between 30 and 50.

Thanks to this study, our understanding of ataxias is being refined, enthuses the researcher. We can't establish correlations between molecular alterations and clinical signs yet, but we've taken a big step towards a better description, which is essential for genetic counseling.

Alexandra DURR Head of the ‘Basic to translational neurogenetics’ team at Paris Brain Institute

It is likely that spinocerebellar ataxias are less rare than previously thought and that we underestimated the frequency of atypical presentations. Hence the interest in “sequencing of the coding parts of the genome (exome) or of the whole genome. This approach must become standard practice if we are to improve the diagnosis of ataxias", Alexandra Durr concludes.

Sources

Cunha et al., Extreme phenotypic heterogeneity in non-expansion spinocerebellar ataxias, The American Journal of Human Genetics, 2023. DOI: 10.1016/j.ajhg.2023.05.009

Our news on the subject

À la recherche de marqueurs d’imagerie dans la démence frontotemporale
Searching for Imaging Markers in Frontotemporal Dementia
Could exploring the relationships between different brain networks help us understand frontotemporal dementia (FTD)? This neurodegenerative disease, which progresses at varying rates, is often diagnosed late—when clinical signs are already severe. At...
01.07.2025 Research, science & health
Stéphanie Debette
Professor Stéphanie Debette takes the helm of Paris Brain Institute
Appointed Executive Director of Paris Brain Institute for a five-year term, Professor Stéphanie Debette took up her new position on January 1, 2025. She succeeds Professor Alexis Brice, who has served as Executive Director since 2012.
01.07.2025 Institutional
Une chercheuse en train de travailler
Paris Brain Institute Announces Winners of the Second Edition of NeurAL, Its Acceleration Program for Innovative Projects
Paris, December 11, 2024. Identifying and supporting innovative neuroscience projects up to the creation of viable startups: this is the mission of iPEPS, Paris Brain Institute's startup studio. Through the NeurAL program, launched in 2023 and...
01.02.2025 Research applications
Monocyte – un globule blanc qui se différencie en macrophage. Crédit : Université d’Edinbourg.
Discovery of a Macrophage Anomaly in Multiple Sclerosis
Certain patients with multiple sclerosis (MS) can partially regenerate myelin—the protective sheath that surrounds nerve fibers—which is damaged during the evolution of the disease. In studying how immune cells influence this remyelination...
12.19.2024 Research, science & health
Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain...
09.05.2024 Research, science & health
See all our news