Skip to main content

Or 34,00 After 66% tax deduction

I make a monthly donation I make an IFI donation
Research, science & health

Visual mental imagery: a patient case suggests a new key brain network

Published on: 09/06/2022 Reading time: 1 min
schéma

Every day, we call upon a unique capacity of our brain, visual mental imagery, which allows us to visualise images, objects or people 'in our heads'. Based on the recent case of a patient with a specific brain lesion, Paolo Bartolomeo's group (Inserm) in the PICNIC Lab at the Paris Brain Institute has identified a region that may be key in mental visualisation.

A patient was admitted to the emergency room after a stroke that had spread to the occipitotemporal area of the left hemisphere. Although his life was saved, the patient woke up with multiple deficits: hemianopia - the loss of vision on the right side - alexia - an inability to read - and an inability to name colours.

These multiple impairments and the presence of the lesion in the left temporal lobe prompted clinicians and researchers at the Paris Brain Institute to evaluate another brain function: visual mental imagery.

The brain networks of mental imagery

At present, the predominant model of the brain basis of mental imagery proposes that it engages the primary visual area at the back of our brain, which is also involved in processing what we actually see with our eyes. However, evidence from patient cases has been accumulating over the last twenty years that contradicts this dogma. In a recent meta-analysis, Paolo Bartolomeo's team suggested that mental imagery is instead encoded in the fronto-parietal networks of attention and working memory, as well as in a small region of the fusiform gyrus of the left temporal lobe. The case of this new patient with a left occipitotemporal lesion was therefore an opportunity for the researchers at the Paris Brain Institute to re-explore their hypothesis. 

Intact visual mental imagery, despite the lesions

In order to test the patient's mental imagery, the doctors gave him a battery of tests. These consisted of several questions about the visual appearance of objects: What is redder between a strawberry and a cherry? Which city is the furthest on the right of a map of France between Bordeaux and Strasbourg? To answer correctly, the patient had to use his mental imagery and visualise in his head a strawberry, a cherry, or a map of France. "To our great surprise, our patient's visual mental imagery was well preserved," explains Paolo Bartolomeo (Inserm), the study's last author. "A new question then arose: why did he not have any difficulty, despite his lesion which should have affected important networks for exercising this function in our brain?”

Halfway between language and semantic networks

Thanks to MRI tractography, which makes it possible to visualise the tracts of neurons in the brain - the wiring, so to speak - the researchers were able to identify some key elements explaining why the patient's mental imagery was intact despite his lesion. They found that the mental imagery node, located in the fusiform gyrus in the left temporal lobe, had been spared by the lesion.

The team of scientists then showed that two connectivity tracts passed through this node: the arcuate fasciculus, associated with the language system, and the inferior longitudinal fasciculus, linked to the semantic system, i.e. our knowledge of the world, objects and concepts.

Because of his lesion, the patient no longer received direct visual information in his left hemisphere. The fusiform imagery node therefore no longer received this type of information but continued to be fed by the semantic network.

"These results support our hypothesis that visual mental imagery comes from a top-down activation from the language and semantic networks. This goes against the dominant model of mental imagery, according to which the primary visual areas are necessary for the implementation of this capacity" concludes Paolo Bartolomeo (Inserm).

Sources

https://pubmed.ncbi.nlm.nih.gov/35622159/
Hajhajate D, Kaufmann BC, Liu J, Siuda-Krzywicka K, Bartolomeo P. Brain Struct Funct. 2022 May 27

Our news on the subject

Interneurones. Crédit : UCLA Broad Stem Cell Research Center.
Stimulating specific neurons in the striatum stops compulsive behaviour
What if we could resist compulsions? These irrational behaviours, particularly common in obsessive-compulsive disorder (OCD), are hard to suppress. At Paris Brain Institute, Éric Burguière's team shows that we can anticipate them and block them ...
09.10.2024 Research, science & health
Les nerfs moteurs présents dans la moelle épinière se projettent vers la périphérie, où ils entrent en contact avec les muscles, formant des connexions appelées jonctions neuromusculaires. Crédit : James N. Sleigh.
Ultrasound show unexpected effects on motor neuron disease
Over the past fifteen years, neurosurgeons have been perfecting a fascinating technique: using ultrasound to temporarily open the blood-brain barrier to facilitate the action of therapeutic molecules in the central nervous system. At Paris Brain ...
09.05.2024 Research, science & health
Un neurone
Rett syndrome: a new gene therapy on the way
Gene therapy could be our best chance of treating Rett syndrome, a neurological disorder that causes severe intellectual and motor impairments. At Paris Brain Institute, Françoise Piguet and her colleagues have looked closely at brain cholesterol ...
07.16.2024 Research, science & health
Lésions d’un patient à l’inclusion dans le protocole (M0) disparues après 2 ans de traitement à la Leriglitazone (M24)
The dual effect of leriglitazone in X-linked Adrenoleukodystrophy (X-ALD)
In 2023, the team led by Professor Fanny Mochel (AP-HP, Sorbonne University), a Paris brain Institute researcher, showed that daily dose of leriglitazone slow down the progression of myelopathy in patients with X-linked adrenoleukodystrophy, and ...
06.28.2024 Research, science & health
Une tête de statue de l'île de Pâques sur laquelle sont posées des éléctrodes
A multimodal approach to better predict recovery in patients with disorders of consciousness
When a patient is admitted to intensive care due to a disorder of consciousness—such as a coma—establishing their neurological prognosis is a crucial yet challenging task. To reduce the uncertainty that precedes the medical decision, a group of ...
05.30.2024 Research, science & health
Population de bactéries commensales (en rouge) dans un intestin grêle de souris. Crédit : University of Chicago
The composition of the gut microbiota could influence decision-making
The way we make decisions in a social context can be explained by psychological, social, and political factors. But what if other forces were at work? Hilke Plassmann and her colleagues from the Paris Brain Institute and the University of Bonn show ...
05.16.2024 Research, science & health
See all our news